
REPORT 3
BARACK OBAMA: LONG FORM BIRTH CERTIFICATE:

Bitmap Layer and Color Attributes

by Mara Zebest

Copyright © 2012 Mara Zebest

All rights reserved by the author. This publication is protected by Copyright, and permission should be obtained
from the author prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Mara Zebest

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 3 of 12

Figure 1: Different color values in text

Dark green text colorMedium green text color

Figure 2: The deceptive color values in Obama’s PDF

Deceptive green text color

Deceptive white color dots

Figure 3: Actual 1-bit underlying black color values

The real 1-bit black text color

The real 1-bit black color dots

COPY
RIG

HT
©

Introduction

I, Mara Zebest, am preparing this report as an update to previous
report material regarding newly discovered attributes of Obama’s
PDF long form birth certificate file.

In previous reports, the original observation of color value
differences between dates and text were correct, but initial
theories offered to account for the color differences need to be
revisited in light of further examination.

Figure 1 displays an example of one instance of color
inconsistencies within the digital file. Notice that both text color
values displayed in Figure 1 are green color values—not black.
Both Color panel values are provided in the Figure to demonstrate
a pattern in which the Red and Blue values are similar (a few digits
apart), while the Green value is stronger—thus the greenish tint
to all the colors. At first glance, no true black appears to exist in
Obama’s PDF file. But nothing could be further from the truth.

Figure 2 offers a close-up of three layer examples in which one
layer contains what appears as off-white color dots, and two other
layers contain slightly varying greenish-gray colors for the date and
registrar text.

Figure 3 offers the same close-up revealing the true color
attributes of the layer content. This hidden black color proves the
point: The best hiding place is in plain sight.

What does all this mean?

It will soon become clear that even color values in the PDF file are
deceptive. The report will explore how the colors are illusory and
also make it apparent that this level of misrepresentation does not
occur through normal document processes—it occurs through
image manipulation.

The overall goal of this report will be to evaluate and explain the
following concepts:

ÂÂ Briefly define the two most commonly used color models: RGB
and CMYK

ÂÂ How to recognize pure black, white, and grayscale color values
by evaluating the numbers in either color model (RGB or
CMYK)

ÂÂ How to recognize 1-bit (ImageMask true) layer attributes—
meaning layers that contain one color only—black

ÂÂ How to recognize 8-bit (ColorSpace) layer attributes—meaning
layers capable of containing more than one color

ÂÂ Optimized layers briefly revisited and evaluated to determine
if and when optimization will produce layers along with the
patterns of optimized layers v manufactured layers

ÂÂ Compare 1-bit v 8-bit layer patterns in an automated process
(such as optimization) against the pattern displayed in Obama’s
PDF file

ÂÂ Examine how multiple 1-bit layers (black color only) can be
manufactured within Obama’s PDF file—and how a black color
value (on a 1-bit layer) is represented as a color other than black

ÂÂ Define PDF printing settings from Illustrator and Preview in
obtaining a low file size and attributes seen in Obama’s PDF
metadata and object code

ÂÂ Rule out MRC compression as a factor in explaining layers

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 4 of 12

Figure 5: A K value signals a pure grayscale color value

K value 3.53%

Layer 1 color value sampled

Color menu button

Figure 6: The RGB off-white color value numbers

All three RGB
values set to 246

Layer 1 color value sampled

Figure 4: RGB grayscale color value patterns v non-grayscale

Hard to determine a pattern for
non-grayscale colors (i.e. turquoise)

All three values are 0 for black

All three values are 255 for white

All three values are 128 for 50% gray

COPY
RIG

HT
©

Color Values by the Numbers

When evaluating color within a digital file, it helps to understand
how to evaluate by the numbers. In order to understand what the
numbers mean, a brief explanation of the two most commonly
used color models might help at this point:

ÂÂ RGB: Is an additive device‑dependent color model typically
used by digital cameras, scanners, computer monitors, and
other image devices. R=Red, G=Green, and B=Blue. Each of
these components will contain a numeric value between 0 and
255. The RGB color model is preferred for image files viewed on
a monitor, such as website images or photos shared via e-mail.

ÂÂ CMYK: Is a subtractive color model typically utilized in the
professional printing industry. The CMYK color model measures
color value using the percentage of each of the four ink colors
to produce the desired composite color: C = Cyan, M=Magenta,
Y=Yellow, and K represents the percentage of black.

Pure Grayscale Patterns
Chances are slim that the average person would know the numeric
combination for creating most color values. For example, if asked
the numeric values for a turquoise color (in either color model;
RGB or CMYK)—it is rare that those numbers are easily retrieved
without looking at a color panel. However, grayscale colors are an
exception to that rule and easier to determine on the fly. There’s a
very simple pattern for either color model, when evaluating white,
black, or any grayscale value in between.

Figure 4 demonstrates a turquoise (non-grayscale color) compared
to the pattern for RGB grayscale values in which all three values will
be the same (unlike the non-grayscale colors). Black is represented
by 0 (the lowest value) for all three components. White will display
255 (the maximum value) for all three components, and grayscale
is any value in between (for all three components). Half of 255 can
be rounded up to 128, thus 50% gray can be represented by using
128 for all three values (R, G, and B).

In Illustrator, the Color panel will typically default to displaying a
sampled grayscale color as a K percentage component (from the
CMYK model). White is represented by 0% (or the absence of any
black). Conversely, 100% would be black and any percentage in
between is a grayscale value.

The next two Figures will sample the color value found on Layer 1
from Obama’s PDF file since this is one of the rare examples in
which a pure grayscale value can be found quickly within Obama’s
PDF file.

When the color on Layer 1 is first sampled, Illustrator will default
to display the result as a K component—in this case, a percentage
value of 3.53% (as shown in Figure 5).

To see the RGB equivalent, click the Color panel menu button
seen in Figure 5 to change color models. Click Show Options if
available, and then click the menu button again and choose the
RGB option from the panel menu. The 3.53% K value is converted
to the RGB equivalent of R=246, G=246, B=246 (as seen in
Figure 6)—which is consistent with the pure RGB grayscale pattern
described. Additionally, the 246 value is closer to the maximum
numeric value range of 255 (used for white), thus the 246 value is
numerically consistent for an off‑white color.

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 5 of 12

Figure 7: Layer order and layer content

Layer 1: White dots

Layer 2: White dots Layer 3: “Non”

Layer 4: “AUG - 8 196”

Layer 5: “AUG - 8 6”

Layer 6: Date Stamp

Layer 7: Registrar Stamp

Layer 8: Form text

Layer 9: Safety-paper background
and anti-aliased form elements

Figure 8: First eight (1-bit) layers displays only one color value each

1

2

3

4
5

6
7

8

Figure 9: Multiple color values will display on last (8-bit) layer

Layer 9 is a color: 8-bit layer—multi-color

COPY
RIG

HT
©

A Simple Eyedropper Test

Figure 7 revisits the positioning of each layer number and the layer
content. Armed with a better insight into recognizing grayscale
color value patterns (from the Color panel), it becomes painfully
obvious (upon opening Obama’s PDF), that pure grayscale values
are hard to find within the file.

There’s another odd behavior that can be observed when sampling
color values. It has to do with a bitmap (or 1-bit) attribute found
in the first eight layers. This may be a good time to define the two
types of layer characteristics contained and verified by object code
within Obama’s PDF file—bitmap (1-bit) v color (8-bit):

ÂÂ A bitmap (or 1-bit ImageMask true) layer is simply a layer that
contains only one color—black

ÂÂ A color (or 8-bit ColorSpace) layer is a layer that can contain
multiple color values (more than one color)

By definition, an ImageMask true 1-bit layer contains a single color
of black. When examining the 1-bit layer color values in Obama’s
PDF, the results do not represent a black color value. The first
off-white dot layer contains a grayscale color value, but it is closer
to white (not black). The 1-bit layers in Obama’s file do adhere to
the one color rule but defy the rule of displaying a black color value.

The mystery deepens with the fact that there are eight layers with a
1-bit attribute. A file that has layers via optimization will only have
a single 1‑bit layer—not eight (optimization will be examined more
closely in the next section of this report).

Try this experiment to quickly determine if a layer is a true 1-bit or
8-bit layer: Open the Obama PDF file in Illustrator and choose the
Eyedropper tool. To perform the experiment, make sure nothing is
selected; otherwise the Eyedropper tool will inadvertently change
the color of a selected object during the experiment.

If nothing is selected, Illustrator will still display a visual clue to the
object’s boundary box location whenever the Eyedropper tool is
hovered over the object—these are the blue outlines surrounding
each layer object as seen in Figures 7 and 8. If this feature is not
turned on, go to the Edit menu > Preferences > Smart Guides and
make sure the option is checked for Object Highlighting.

With no objects selected, hover over any of the first eight layer
objects with the Eyedropper tool, and click anywhere inside the
layer object’s boundary box. Figure 8 shows the location of each
object and the color values that will display for each of the first
eight layers. For the purpose of easy viewing, Figure 8 also has the
safety-paper layer turned off—but it is preferable to leave all the
layers on when performing this test. If the layer is a 1-bit layer, the
same color—one color value assigned to the layer—will display on
the Color panel regardless of where the Eyedropper is clicked within
that same boundary box. This behavior only occurs for the top eight
layers. Even when the Eyedropper tool is clicked over a color that is
clearly different from another color within the object box area—the
same assigned color value will consistently display in the Color
panel—this is expected behavior of layers with 1-bit (ImageMask
true) properties.

Now contrast the behavior for the last layer (safety-paper layer).
Click anywhere—away from the 1-bit objects (or turn them off as
seen in Figure 9). A variety of colors will display depending where
the Eyedropper tool is clicked—this is the expected behavior of an
8-bit color layer.

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 6 of 12

Figure 10: Optimization-produced layers applied to AP file

Massive number of color layers
No logic to layer
object decisions

Scroll box

One bitmap layer at top

Figure 11: Optimized layers randomly divide image information

Some layers renamed to highlight random
organization of registrar text layers

Randomly divided text onto layers

Blue square indicates a selected layer

Figure 12: Layers panel displays typical optimized layer pattern

Remaining layers are color (8-bit)

Only one bitmap (1-bit) layer

COPY
RIG

HT
©

Optimization Layer Patterns

A detour to discuss optimization is needed. Optimization refers to
the process used when saving a file (in this case as a PDF) in which
image quality is attempted to be maintained (or optimized) while
lowering the file size. Attempts are made to explain the presence of
layers by using an optimization argument—but the optimization
excuse fails—on multiple levels. Despite efforts to claim otherwise,
the layers in Obama’s PDF are a big deal to prove manipulation.

It is highly recommended to review page 5 of my previous report
(released on March 1, 2012) through the Maricopa County
Sheriff’s Office, which briefly explains the difference between
layers produced by manually manipulation as opposed to those
produced by an automated optimized process. The report can be
downloaded from the following link:

http://www.mcso.org/MultiMedia/PressRelease/MARAZEBESTREPORT.pdf

To expand on the linked report, one item needs clarification. While
it is true that optimization can cause layers—not all optimized
PDF files create automated layers. This is a crucial concept. To
restate the point: Optimization only creates layers from specific
software programs—not all programs produce automated layers
when optimizing. Proponents of the optimization argument would
have you believe that layers are easily and always generated when
simply saving as an optimized PDF file—not true! Acrobat Pro is
the most commonly used program that can produce automated
layers when optimizing as a PDF (but this is still dependent on the
method and options used).

Programs like Photoshop or Illustrator do not produce automated
layers—these programs only reflect layers that are digitally
manufactured by the user and will not generate any additional
layers when optimizing as a PDF. In fact, an optimized PDF from
Photoshop usually results in a flattened file with one layer only.

Here’s an additional problem for the optimization argument: The
metadata code for Obama’s PDF states that Preview was used to
generate the optimized PDF. Preview is a Mac-based program
(using a Quartz PDFContext engine). The program Preview, similar
to Illustrator, will maintain existing layers created by the user, but
will not generate layers that do not already pre‑exist in the file.

Figures 10–12 used the AP version of Obama’s LFBC as a test file
to optimize within Acrobat Pro 9.0 to demonstrate automated layer
patterns. Figure 10 shows the massive numbers of layers typically
generated in an optimized PDF (compared to the nine layers in
Obama’s PDF file).

Figure 11 is a close-up of how the registrar stamp is divided onto
multiple layers—cut into random rectangles. Text is chopped
haphazardly across layers which often contain surrounding
background colors. The text cannot be relocated independently
of the background image. Additionally, text is not in one piece.
By contrast, Obama’s PDF has intelligence to the layer order: The
background image is completely contained on one layer and all
remaining layers are independent of the background.

Figure 12 illustrates the typical 1‑bit v 8‑bit pattern results of
optimized PDF layers:

ÂÂ A single 1‑bit layer at the top of the layer stack— containing
the black color [Obama’s PDF has eight, no visible black]

ÂÂ All remaining layers are color layers (8‑bit) containing a variety
of color values [Obama’s PDF has only one color layer]

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 7 of 12

Figure 15: Object code extracted for optimized file layers

First layer: 1-bit—1 color

All remaining layers: 8-bit—multi-color

Figure 14: Object code extracted for Obama PDF layers

First 8 layers: 1-bit—1 color

Last layer: 8-bit—multi-color

Figure 13: Metadata code offers Mac and Preview information

Creator Tool: Preview

Mac using Preview Quartz
PDFContext Engine

Click to expand folder information

Advanced Tab

COPY
RIG

HT
©

Object Code 1-Bit v 8-Bit Layer Patterns

The metadata and object code will be examined in this section to
reinforce what has been discussed. Figure 13 metadata can be
viewed by opening Obama’s PDF file in Illustrator and then:

ÂÂ Go to the File menu > File Info

ÂÂ Scroll to locate the Advanced tab, click to expand all folder
information

The metadata seen in Figure 13 confirms the Mac program—
Preview—was used. Preview is a program that is limited in what it
can do—mostly used to view files (as its name suggests). Preview
can open any program file type—and it was used as a last step
to save Obama’s file (as an optimized PDF). By resaving within
Preview, any previous existing metadata history is eliminated and
replaced with Preview metadata. In other words, the mere fact that
Preview is the only program displayed in the metadata does not
mean Preview was the only program used in the creation process.
Resaving a file (to PDF) from within Preview will remove any prior
metadata evidence. The digital trail of image manipulation from
previous programs is gone and any prior metadata information is
no longer available. And as mentioned on the previous page, no
additional layers are generated from within Preview beyond the
pre-existing layers created prior to opening the file in Preview. The
layers had to come from another program.

In addition to metadata, the object code can be viewed easily
by opening Obama’s PDF file with WordPad or Word. These text
editing programs can provide a glimpse into the object code
description of layer properties. Press Ctrl+F to display the Find
dialog box and do a search for BitsPer (no space) to find the layer
object code. Figure 14 displays the Obama PDF object code for
each layer (extracted and pasted into a new Word document for a
cleaner view).

As a side note, at the end of each code line, notice that FlateDecode
is used for the first 8 layers, while DCTDecode is used for the last
color layer. This will be discussed later in the report regarding
printing options—but is merely mentioned to debunk an
argument floated which claims the JBIG2 file format played a role
in producing layers. If the JBIG2 argument were true, the object
code would reflect JBIG2Decode for any of the nine layers. As you
can see—it does not. Additionally, JBIG2 applies to black and white
images—not color.

Figure 14 also confirms that the first 8 layers of code (presented in
no particular order) all contain 1-bit layer information, and only the
ninth layer contains color (or 8-bit) information.

In contrast, Figure 15 reflects a sampling of the layer object code
from the AP version (optimized from previous page). The object
code is too numerous to extract for all the layers in the Figure, but
the pattern is visible in this optimized file as follows:

ÂÂ ONE 1-bit (black color value) layer

ÂÂ All remaining object code layers are 8-bit (color) containing any
combination of remaining image items (such as text, form lines,
and background)

Figure 15 also highlights (in yellow) that FlateDecode is the typical
decoder applied—no sign of JPBIG2Decode as the opposition
claims. Again, the AP object code in Figure 15 confirms the
number of 1‑bit v 8‑bit layer patterns viewed in the Layers panel
(seen in Figure 12).

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 8 of 12

Figure 16: Photoshop Export Options dialog box

Option to Write Layers is chosen

Figure 18: Converting to Grayscale Image Mode

End results:
one layer

Dialog box 1:
click Merge

Dialog box 2:
click Discard

Figure 19: Final conversion to Bitmap Image Mode

End results:
Flatten layer

Dialog box 1:
click OK

Dialog box 2:
50% Threshold

Figure 17: Layer 8 form text isolated with crop selection

Target layer on,
others turned off

Ctrl+click the vector
mask thumbnail

Selection surrounding text layer

COPY
RIG

HT
©

Producing Bitmap (1-Bit) Layers

The next two sections will address the following questions
respectively:

ÂÂ How are multiple 1-bit layers produced within a file?

ÂÂ How can a 1-bit layer represent a color other than black?

NOTE: Answering these questions is not meant to imply that these
methods are the same used by the forger(s). The purpose is to offer
a plausible solution, but it is not offered as the absolute method
since there is always more than one way to manipulate images.

Converting an image to bitmap mode within Photoshop will
produce a black and white image file with the desired 1-bit
(ImageMask true) attribute. The process of converting to a bitmap
image mode should not be confused with saving a file in a bitmap
file format. Layer 8 in Obama’s PDF—the form text layer—is the
largest and easiest to see and will be used to demonstrate the
process. To obtain a similar layered Photoshop file, simply export
the file from Illustrator (File > Export) as a Photoshop (PSD) file
with the option to preserve the layers as seen in Figure 16.

Open the exported PSD file in Photoshop. Notice each layer in the
exported PDF file contains a vector mask which will be used to
properly crop each layer (to avoid a large layer size). The bitmap
color mode will result in a flattened file; thus to produce multiple
1-bit layers (for final exported output), each intended layer
would need to be flattened as a separate bitmap layer file. The
steps below would then need to be repeated separately for each
intended exported 1-bit layer. Thus, the following was repeated for
each 1-bit layer compiled in the final Obama PDF file results:

ÂÂ Turn off any undesired layers while leaving the target layer on

ÂÂ Ctrl+click on the vector mask thumbnail found on the target
layer to obtain a selection (as seen in Figure 17)

ÂÂ Go to the Image menu > Crop. Press Ctrl+D to deselect after
the crop is complete

ÂÂ Go to the Image menu > Mode > Grayscale (color information
needs to be discarded before the Bitmap option is available)

ÂÂ Click Merge in the first dialog box presented (any layers turned
off will be discarded)

ÂÂ Click Discard in the second dialog box presented (to remove
any color information). The result will be one-layer, and all color
converted to grayscale values (see Figure 18)

ÂÂ Perform this OPTIONAL STEP ONLY if the image color is
lighter than 50% gray—as in the case of the two top white
dot layers—choose black as a foreground color, press
Alt+Shift+Delete (to fill any pixels on the layer with black)

ÂÂ Go to the Image menu > Mode > Bitmap and click OK in the
first dialog box to flatten layers

ÂÂ In the second dialog box, decide on the resolution output and
choose the 50% Threshold option. This option will turn any
50% gray value or darker to black, and any lighter value to
white (the reason behind the recommended optional step for
the white dot layers). Click OK (see Figure 19)

The result is a flattened one layer (1-bit) file, with black as the only
color. Save the file as a separate PSD file (or any available file format
that supports bitmap mode). Return to the original starting PSD
file to repeat the process for each layer as needed.

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 9 of 12

Figure 20: Open the bitmap file in Illustrator, select and copy

Select the entire layer and copy

Figure 22: Alternate Place method

Place object displays X
through bounding box

Figure 21: Paste the bitmap file in Illustrator

Click OK to match the
profile of destination file

Figure 24: Select the <Image> sub-layers to change color Fill

Click to open/expand

Click circle at right of
<Image> sub-layer to

select the target object

Fill icon

No Fill icon
Click Color menu to
choose RGB sliders

Figure 23: A Fill color can be applied to colorize a 1-bit layer

No Color Fill: Reflects black bitmap text No Color

Color Fill Applied: Reflects colorized text

Color applied

Black 1-bit color

Greenish-black color fill

COPY
RIG

HT
©

Compiling & Colorizing in Illustrator

After each layer is extracted and converted to a bitmap mode file,
the layers are ready to compile and colorize within Illustrator. For
the sake of speed, assume the Illustrator file has been compiled
with all the layers in position except for the form text layer
(extracted from the previous exercise).

Assume all of the 1-bit layers were added with a similar process,
merely repeated for each separate layer. With the layered file
opened in Illustrator, here is how to add the missing text layer:

ÂÂ Open the bitmap file in Illustrator. Select the object and press
Ctrl+C to copy (see Figure 20)

ÂÂ Switch to the opened Obama Illustrator file, and press Ctrl+V
to paste. Click OK if a Paste Profile Mismatch dialog box
appears as seen in Figure 21

NOTE: An alternative method to the steps listed above would
be to use File > Place within the original Obama certificate file.
However that method creates a visual clue (of an embedded link)
by displaying an “X” placeholder indicator within the object’s
bounding box (as seen in Figure 22). This method is absolutely a
more direct route to take—but due to the absence of the “X” linked
object indicator in Obama’s PDF file (as seen in Figure 23), the
copy and paste method is a probable workaround method.

As a reminder, there are other minor details that have been
covered in prior reports and not the focus of the colorized bitmap
discussion. These would include details that occurred when
the Obama PDF was compiled, such as the objects brought in
requiring a -90° rotation (based on the Links panel information).
Also, each new layer added to the file will (by default) paste at the
top of the layer stack, but the layers can easily be dragged to the
preferred position within the stack (and even renamed if desired).
The Flatten Artwork option in the Layers panel would have been
applied if additional layers were created during the process, and all
objects were grouped to a Clipping Mask Path.

Once the layer is properly positioned, all that remains is assigning a
desired color (of choice) as follows:

ÂÂ With the target object still selected, choose a color Fill as
desired (refer to Figure 23)

It’s that easy! When a layer has this 1-bit (ImageMask true)
attribute, the white displays as transparency in Illustrator and black
will take on any color applied as a Fill. At first glance, it is easy to
draw a false impression that no black exists within Obama’s digital
file—but nothing could be further from the truth. Try this test:

ÂÂ Open Obama’s PDF in illustrator

ÂÂ On the Layers panel, click to open (expand) any of the first eight
<Group> sub-layer objects

ÂÂ Click the select circle icon to the right of the sub-layer titled
as <Image>—not the <Clipping Path> sub-layer (refer to
Figure 24)

ÂÂ Turn off the color Fill (the icon option with the slash seen in
Figure 24). Even the off-white dots in the first two layers are
black (not off-white)

ÂÂ To further prove the point, with any of the eight bitmap
<Image> sub-layers selected, pick any Fill color. Play with the
Color panel sliders and watch the layer change color as desired

NOTE: Press Ctrl+Z to undo as needed while experimenting.

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 10 of 12

Figure 25: Object code extracted for Obama PDF layers

Figure 26: Optimized 1-bit layer reflects black as expected

1-bit layer defaults
to grayscale value

Figure 28: Fill color turned off for all 1-bit layers

White dots turn black

White dots turn black

Figure 27: Optimized 1-bit layer Fill color can be manipulated

1-bit layer can be
manipulated to

any color

8-bit layers still reflect
black/grayscale remnants

COPY
RIG

HT
©

ImageMask True Property Behavior
Figure 25 provides a reminder that the object code displayed for
Obama’s PDF contains 8 layers with the following properties:

ÂÂ ImageMask true

ÂÂ BitsPerComponent 1 (1-bit layer)

ÂÂ FlateDecode

The last layer contains varying colors for the safety-paper and anti-
aliased elements with the following object code properties:

ÂÂ ColorSpace

ÂÂ BitsPerComponent 8 (8-bit layer)

ÂÂ DCTDecode

Think of the ImageMask true property (for all 1-bit objects) as
analogous to applying paint through a cut-out stencil. The white
areas of the bitmap layer act as the stencil mask (displaying as
transparent within Illustrator). The paint applied reaches the layer
where black resides. Due to this stencil-like (ImageMask true)
property, when the Fill color is turned off, Illustrator’s Eyedropper
tool will not register color values for the black and white stencil.
Only when a Fill color is applied, will the Eyedropper register a color
value. This also reinforces the Eyedropper behavior (seen earlier) in
which the Fill color is the only color that displays a value even when
clicking in the stencil-like (or transparent) areas within the object.

Understand that while it is possible for optimization to create a 1-bit
layer to be colorized (by normal scanning and saving procedures)—
the key difference is the optimized file result will contain only ONE
1-bit layer and the color applied to that layer will reflect a grayscale
value close to black. Figure 26 uses the optimized AP file once
again, to see an example of this. When the file was optimized,
the process attempted to pull all the pixels that had the darkest
black color (into the top 1-bit layer) and assigned a grayscale color
representing that black value. Figure 27 shows that the layer
behaves similarly as described; in which the black 1-bit layer acts
as a stencil—the color can be manipulated to any color value (in
Illustrator). Notice that other grayscale black values on 8-bit layers
cannot be manipulated in the same manner.

Obama’s PDF file implies a choice to manipulate the file to contain
not one—but eight bitmap layers. A choice has to be made by the
user to import and compile this many 1-bit layers. But even more
importantly, a choice has to be made to manipulate the color of the
1-bit layers to display a color other than black. The fact that the 1-bit
layers in Obama’s PDF contain colors other than black is not due to
any variation of scanning settings, nor any variation of optimization
settings. Obama’s PDF contains color outside the grayscale range.
This form of color manipulation is just that—manipulation—and
further proof of a manufactured file.

Figure 28 displays the results if the color Fill is turned off for all 1-bit
layers (in Obama’s file). Note the two white dot layers also turn black.
To be clear—when working in Illustrator—any vector-based object
can easily have a Fill color applied (as well as a color outline border
known as a Stroke). However, the layers in the Obama PDF are not
vector; they are raster-based (also known as pixel-based). The 1-bit
layers with the ImageMask true property are the only raster-based
objects that can be colorized as described (using the Fill color)—no
other raster-based file formats will behave in such a manner.

Next section will cover the significance of the FlateDecode and
DCTDecode properties seen in the object code.

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 11 of 12

Figure 29: Save Adobe PDF dialog box—General options

General options

Figure 30: Save Adobe PDF dialog box—Compression options

Color images set to JPEG compression

Compression options

Figure 31: File menu > Print

Figure 32: Save Adobe PDF dialog box—Compression options

Save as PDF optionCOPY
RIG

HT
©

Printing to PDF
One advantage to compiling multiple 1-bit layers would certainly
be to reduce file size. As seen in the previous sections, in order to
control the presence of multiple 1-bit layers (along with the colors
applied); each layer was saved and compiled separately within
Illustrator.

When saving the Illustrator file as a PDF, the default settings
will generate FlateDecode for all layers. Recall that using
FlateDecode for the 1-bit layer objects is consistent with the object
code reflected in Obama’s PDF (refer to Figure 25). But when
FlateDecode is applied to the bottom color (safety-paper) layer—it
will bloat the file size, making it more challenging to lower the file
size while maintaining image quality consistent with Obama’s PDF.

As previously seen in Figure 25, the object code in Obama’s PDF
reflects a different decoder for the 8-bit color layer—DCTDecode—
which is analogous to JPEG compression for color images. By using
DCTDecode for this layer, the file size is reduced substantially.

How are different decoders applied to the various layers? This is
simply a matter of adjusting a few settings in the PDF dialog box. In
this example, from Illustrator’s File menu, choose Save As and be
sure to adjust the Save as type option to PDF. Figure 29 displays
the initial General page options in the Save Adobe PDF dialog box.

By default, the Compression page options are set to Zip for
all three image types: Color Bitmap, Grayscale Bitmap, and
Monochrome Bitmap. The Zip option will produce a FlateDecode
result. However, by adjusting the option for the Color Bitmap
Compression to JPEG using a Medium or less quality setting (as
seen in Figure 30), the color information on the bottom 8-bit
safety-paper layer will produce and match the JPEG DCTDecode
compression seen in Obama’s object code.

Once the file results are saved from Illustrator as a PDF, the file is
then opened and resaved (also known as refried) from Preview for
two reasons:

ÂÂ To scrub any prior metadata evidence (as cover for any digital
tracks of manipulation)

ÂÂ To reduce the file size even further

There are two methods to save or refry as a Preview PDF:

ÂÂ The File > Save As method (using PDF settings) which
produces a noticeably poorer quality result, therefore, the
second option was more likely used…

ÂÂ The File > Print method seen in Figure 31 will maintain image
quality more effectively while substantially reducing the file
size. Choose Save as PDF within the Print dialog box as shown
in Figure 32

The final Preview PDF result will contain matching metadata and
object code (as seen in Obama’s PDF).

To Summarize:

ÂÂ Layers cannot be created within Preview and had to be
manufactured in another program prior to the last step of
saving from Preview

ÂÂ Layers in Obama’s file were not produced from an automated
optimization process which would contain a single layer (not
eight) of 1-bit quality (and an optimized 1-bit layer displays a
black color value)

REPORT BARACK OBAMA: LONG FORM BIRTH CERTIFICATE Page 12 of 12

Figure 33: MRC compression generates Illustrator warning message

Figure 35: File menu > Print

Figure 34: MRC object code pattern: Two 8-bit layers; one 1-bit layer

Foreground
color layer

ImageMask
1-bit layer

Background
color layer

Foreground color plane layer is poured into the 1-bit ImageMask (middle)
stencil-like layer and displayed with the background color plane layer

COPY
RIG

HT
©

MRC Explained and Concluding Points
The layers presented in Obama’s PDF file were not a product of
optimization or any automated process. As previously mentioned,
the most likely program to produce optimized layers (from an
automated process) would be Adobe’s Acrobat Pro—version 9 or
earlier uses an Adaptive compression method (refer back to the
results shown in Figure 10).

Acrobat Pro X (version 10) or later uses a method that resembles
MRC (Mixed Raster Content) compression. MRC was not a factor
in Obama’s PDF either, but worth noting in case any defenders of
Obama’s PDF want to throw the MRC argument up against the wall
hoping it will stick.

Some disqualifying features of MRC (not found in Obama’s PDF) are
as follows:

ÂÂ MRC has a tendency to generate a warning message seen in
Figure 33 whenever the file is opened in Illustrator. Obama’s
PDF file does not trigger any such warning message

ÂÂ Similar to Adaptive compression, MRC will produce only one
1-bit (ImageMask true) layer in the object code. Obama’s PDF
file has eight 1-bit layers

ÂÂ Typical layer results will be three object code layers consisting
of two 8-bit layers and one 1-bit layer (seen in Figure 34). In
contrast, Obama’s file has only one 8-bit layer (and of course,
there’s still the problem of the eight 1-bit layers)

ÂÂ Figure 34 gives an approximate idea of what the layer process
and results might look like if Obama’s PDF file had MRC
compression applied. The Figure uses exaggerated colors (for
the top 8-bit color layer) to easily demonstrate the process.
MRC uses three layers in the object code, but only two layers
will display when opened in Illustrator as follows: The bottom
8-bit background layer; and the combined top two layers in
which the top 8-bit color layer provides the color values for the
1-bit (stencil-like) middle layer. The process of interpreting the
top two layers (as a combined layer) when opened in Illustrator
explains the warning message that objects “have been
reinterpreted”. Again, these layer characteristics are not found in
the Obama PDF which contains nine layers, and the 1-bit layers
do not get their color from a separate 8-bit color layer at the
top but rather retain separate Fill colors within each 1-bit layer

An accumulated understanding into all the attributes of
optimization compared with all the attributes of Obama’s PDF
file makes it increasingly impossible to defend Obama’s file as
“normal.” Once it becomes clear that the colors in the first eight
layers are an applied choice, one does have to wonder why the
particular color choices were made. For example, why choose a
color for date text that differs from other text layers? But the more
important and significant question still remains: Why do these file
attributes even exist at all? A legitimate file would not contain this
many problems—the more that is learned about the file, the more
problematic the file becomes.

Obama’s PDF file can no longer be referred to as a “document,” since
that term implies it existed and started in paper form. Obama’s PDF
must be referred to as a “digital file” because that is all it has ever
been—manufactured and compiled digitally—and only exists as a
“document” when the user goes to the File menu and clicks the
Print option from within the file (as seen in Figure 35).

	Front cover
	Page 3
	Introduction
	What does all this mean?

	Page 4
	Color Values by the Numbers

	Page 5
	A Simple Eyedropper Test

	Page 6
	Optimization Layer Patterns

	Page 7
	Object Code 1-Bit v 8-Bit Layer Patterns

	Page 8
	Producing Bitmap (1-Bit) Layers

	Page 9
	Compiling & Colorizing in Illustrator

	Page 10
	ImageMask True Property Behavior

	Page 11
	Printing to PDF

	Page 12
	MRC Explained and Concluding Points

